The Christofk lab publishes a paper titled "Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization" in Cell.

The Christofk lab publishes a paper titled "Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization" in Cell.

The Christofk lab publishes a paper titled "Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization" in Cell.

By William J. Sullivan, Peter J. Mullen, Ernst W. Schmid, Thomas Q. de Aguiar Vallim, William E. Lowry, Heather R. Christofk 

The metabolic state of a cell is influenced by cellextrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinasemediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.

The complete article can be found here.